MTH 305: Practice assignment 7

1 Primitive roots

Establish the following assertions.
(i) If $|a|_{p}=2 k$, where p is a prime, then $a^{k} \equiv-1(\bmod p)$.
(ii) If $|a|_{n}=n-1$, then n is a prime.
(iii) $\phi\left(2^{n}-1\right)$ is a multiple of n, for each $n>1$.
(iv) If $|a|_{p}=3$, where p is an odd prime, then $|a+1|_{p}=6$.
(v) The odd prime divisors of $n^{4}+1$ are of the form $8 k+1$.
(vi) If p and q are odd primes and $q \mid a^{p}-1$, then either $q \mid a-1$ or $q=2 k p+1$, for some integer k.
(vii) There are infinitely many primes of the form $6 k+1$ and $8 k+1$.
(viii) If r is a primitive root of n, then r^{k} is a primitive root of n if and only if $\operatorname{gcd}(k, \phi(n))=1$.
(ix) If p is an odd prime, then $\sum_{k=0}^{p-2} x^{k} \equiv 0(\bmod p)$ has exactly $p-2$ incongruent solutions.
(x) Let r be a primitive root of an odd prime p.
(a) $r^{(p-1) / 2} \equiv-1(\bmod p)$.
(b) If r^{\prime} is a another primitive root of p, then $r r^{\prime}$ is not a primitive root of p.
(c) If $p \equiv 1(\bmod 4)$, then $-r$ is also a primitive root of p.
(d) If $p \equiv 3(\bmod 4)$, then $|-r|_{p}=(p-1) / 2$.
(xi) Let p be an odd prime. Then:
(a) The product of the primitive roots of p is congruent to $(-1)^{\phi(p-1)}$ modulo p.
(b)

$$
\sum_{k=0}^{p-2} r^{k n} \equiv \begin{cases}0 \quad(\bmod p), & \text { if }(p-1) \nmid n, \text { and } \\ -1 \quad(\bmod p), & \text { if }(p-1) \mid n\end{cases}
$$

(c) Any primitive root r of p^{n} is also a primitive root of p.
(d) A primitive root r of p^{k} is a primitive of $2 p^{k}$ if and only if r is an odd integer.
(e) When r is a primitive root of p such that $(r+t p)^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$, we have $r+t p$ is a primitive root of p^{k}, for each $k \geq 1$.

2 Theory of indices

(i) Establish the following assertions.
(a) Let r be a primitive root of an odd prime p. Then:
(1) When r^{\prime} is also a primitive root of p, we have

$$
\operatorname{ind}_{r^{\prime}} a=\left(\operatorname{ind}_{r} a\right)\left(\operatorname{ind}_{r^{\prime}} r\right) \quad(\bmod p-1) .
$$

(2) $\operatorname{ind}_{r}(-1)=\operatorname{ind}_{r}(p-1)=\frac{1}{2}(p-1)$.
(3) $\operatorname{ind}_{r}(p-a) \equiv \operatorname{ind}_{r} a+\frac{p-1}{2}(\bmod p-1)$.
(4) The congruence $a^{x} \equiv b(\bmod p)$ has a solution if and only if $d \mid \operatorname{ind}_{r} b$, where $d=\operatorname{gcd}\left(\operatorname{ind}_{r} a, p-1\right)$. In this case, there are d incongruent solutions modulo $p-1$.
(b) Let p be an odd prime. Then:
(1) $x^{2} \equiv-1(\bmod p)$ is solvable if and only if $p \equiv 1(\bmod 4)$.
(2) $x^{4} \equiv-1(\bmod p)$ is solvable if and only if $p \equiv 1(\bmod 8)$.
(ii) Solve the following congruences, after determining whether they are solvable.
(a) $x^{8} \equiv 10(\bmod 11)$.
(b) $8 x^{5} \equiv 10(\bmod 17)$.
(c) $x^{3} \equiv 3(\bmod 19)$
(d) $x^{5}=13(\bmod 23)$
(e) $x^{7} \equiv 15(\bmod 29)$
(f) $5^{x} \equiv 4(\bmod 19)$.

