MTH 305: Practice assignment 7

1 Primitive roots

Establish the following assertions.

- (i) If $|a|_p = 2k$, where p is a prime, then $a^k \equiv -1 \pmod{p}$.
- (ii) If $|a|_n = n 1$, then n is a prime.
- (iii) $\phi(2^n 1)$ is a multiple of n, for each n > 1.
- (iv) If $|a|_p = 3$, where p is an odd prime, then $|a + 1|_p = 6$.
- (v) The odd prime divisors of $n^4 + 1$ are of the form 8k + 1.
- (vi) If p and q are odd primes and $q \mid a^p 1$, then either $q \mid a 1$ or q = 2kp + 1, for some integer k.
- (vii) There are infinitely many primes of the form 6k + 1 and 8k + 1.
- (viii) If r is a primitive root of n, then r^k is a primitive root of n if and only if $gcd(k, \phi(n)) = 1$.
- (ix) If p is an odd prime, then $\sum_{k=0}^{p-2} x^k \equiv 0 \pmod{p}$ has exactly p-2 incongruent solutions.
- (x) Let r be a primitive root of an odd prime p.
 - (a) $r^{(p-1)/2} \equiv -1 \pmod{p}$.
 - (b) If r' is another primitive root of p, then rr' is not a primitive root of p.
 - (c) If $p \equiv 1 \pmod{4}$, then -r is also a primitive root of p.

(d) If
$$p \equiv 3 \pmod{4}$$
, then $|-r|_p = (p-1)/2$.

- (xi) Let p be an odd prime. Then:
 - (a) The product of the primitive roots of p is congruent to $(-1)^{\phi(p-1)}$ modulo p.

$$\sum_{k=0}^{p-2} r^{kn} \equiv \begin{cases} 0 \pmod{p}, & \text{if } (p-1) \nmid n, \text{ and} \\ -1 \pmod{p}, & \text{if } (p-1) \mid n. \end{cases}$$

- (c) Any primitive root r of p^n is also a primitive root of p.
- (d) A primitive root r of p^k is a primitive of $2p^k$ if and only if r is an odd integer.
- (e) When r is a primitive root of p such that $(r+tp)^{p-1} \not\equiv 1 \pmod{p^2}$, we have r + tp is a primitive root of p^k , for each $k \geq 1$.

2 Theory of indices

- (i) Establish the following assertions.
 - (a) Let r be a primitive root of an odd prime p. Then:
 - (1) When r' is also a primitive root of p, we have

$$\operatorname{ind}_{r'} a = (\operatorname{ind}_r a)(\operatorname{ind}_{r'} r) \pmod{p-1}$$

- (2) $\operatorname{ind}_r(-1) = \operatorname{ind}_r(p-1) = \frac{1}{2}(p-1).$
- (3) $\operatorname{ind}_r(p-a) \equiv \operatorname{ind}_r a + \frac{p-1}{2} \pmod{p-1}$.
- (4) The congruence $a^x \equiv b \pmod{p}$ has a solution if and only if $d \mid \operatorname{ind}_r b$, where $d = \operatorname{gcd}(\operatorname{ind}_r a, p-1)$. In this case, there are d incongruent solutions modulo p-1.
- (b) Let p be an odd prime. Then:
 - (1) $x^2 \equiv -1 \pmod{p}$ is solvable if and only if $p \equiv 1 \pmod{4}$.
 - (2) $x^4 \equiv -1 \pmod{p}$ is solvable if and only if $p \equiv 1 \pmod{8}$.
- (ii) Solve the following congruences, after determining whether they are solvable.

- (a) $x^8 \equiv 10 \pmod{11}$.
- (b) $8x^5 \equiv 10 \pmod{17}$.
- (c) $x^3 \equiv 3 \pmod{19}$
- (d) $x^5 = 13 \pmod{23}$
- (e) $x^7 \equiv 15 \pmod{29}$
- (f) $5^x \equiv 4 \pmod{19}$.